Copied to
clipboard

G = D4○(C22⋊C8)  order 128 = 27

Central product of D4 and C22⋊C8

p-group, metabelian, nilpotent (class 2), monomial

Aliases: D4(C22⋊C8), Q8(C22⋊C8), C4○D4.56D4, C223(C8○D4), C24.74(C2×C4), C22⋊C873C22, (C2×C4).630C24, (C2×C8).465C23, (C22×C8)⋊46C22, (C22×D4).35C4, C4.179(C22×D4), (C22×Q8).28C4, C24.4C431C2, D4.15(C22⋊C4), C2.7(Q8○M4(2)), Q8.15(C22⋊C4), C23.97(C22×C4), (C2×M4(2))⋊65C22, (C23×C4).507C22, C22.160(C23×C4), (C22×C4).1494C23, C2.7(C2×C8○D4), (C2×C8○D4)⋊16C2, C4○D4(C22⋊C8), (C2×Q8)(C22⋊C8), (C2×C22⋊C8)⋊41C2, (C2×C4○D4).23C4, C4.28(C2×C22⋊C4), (C2×D4).220(C2×C4), (C2×C4).1079(C2×D4), (C2×Q8).223(C2×C4), C22.2(C2×C22⋊C4), (C22×C8)⋊C227C2, (C22×C4).320(C2×C4), (C2×C4).241(C22×C4), (C22×C4○D4).15C2, C2.23(C22×C22⋊C4), (C2×C4○D4).269C22, C22⋊C8(C2×C4○D4), SmallGroup(128,1612)

Series: Derived Chief Lower central Upper central Jennings

C1C22 — D4○(C22⋊C8)
C1C2C4C2×C4C22×C4C2×C4○D4C22×C4○D4 — D4○(C22⋊C8)
C1C22 — D4○(C22⋊C8)
C1C2×C4 — D4○(C22⋊C8)
C1C2C2C2×C4 — D4○(C22⋊C8)

Generators and relations for D4○(C22⋊C8)
 G = < a,b,c,d,e | a4=b2=c2=d2=1, e4=a2, bab=a-1, ac=ca, ad=da, ae=ea, bc=cb, bd=db, be=eb, ece-1=cd=dc, de=ed >

Subgroups: 636 in 387 conjugacy classes, 174 normal (16 characteristic)
C1, C2, C2, C4, C4, C22, C22, C22, C8, C2×C4, C2×C4, C2×C4, D4, D4, Q8, Q8, C23, C23, C23, C2×C8, C2×C8, M4(2), C22×C4, C22×C4, C22×C4, C2×D4, C2×D4, C2×Q8, C2×Q8, C2×Q8, C4○D4, C4○D4, C24, C22⋊C8, C22⋊C8, C22×C8, C2×M4(2), C8○D4, C23×C4, C22×D4, C22×Q8, C2×C4○D4, C2×C4○D4, C2×C4○D4, C2×C22⋊C8, C24.4C4, (C22×C8)⋊C2, C2×C8○D4, C22×C4○D4, D4○(C22⋊C8)
Quotients: C1, C2, C4, C22, C2×C4, D4, C23, C22⋊C4, C22×C4, C2×D4, C24, C2×C22⋊C4, C8○D4, C23×C4, C22×D4, C22×C22⋊C4, C2×C8○D4, Q8○M4(2), D4○(C22⋊C8)

Smallest permutation representation of D4○(C22⋊C8)
On 32 points
Generators in S32
(1 29 5 25)(2 30 6 26)(3 31 7 27)(4 32 8 28)(9 22 13 18)(10 23 14 19)(11 24 15 20)(12 17 16 21)
(1 17)(2 18)(3 19)(4 20)(5 21)(6 22)(7 23)(8 24)(9 26)(10 27)(11 28)(12 29)(13 30)(14 31)(15 32)(16 25)
(1 5)(2 28)(3 7)(4 30)(6 32)(8 26)(9 24)(10 14)(11 18)(12 16)(13 20)(15 22)(17 21)(19 23)(25 29)(27 31)
(1 31)(2 32)(3 25)(4 26)(5 27)(6 28)(7 29)(8 30)(9 20)(10 21)(11 22)(12 23)(13 24)(14 17)(15 18)(16 19)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)

G:=sub<Sym(32)| (1,29,5,25)(2,30,6,26)(3,31,7,27)(4,32,8,28)(9,22,13,18)(10,23,14,19)(11,24,15,20)(12,17,16,21), (1,17)(2,18)(3,19)(4,20)(5,21)(6,22)(7,23)(8,24)(9,26)(10,27)(11,28)(12,29)(13,30)(14,31)(15,32)(16,25), (1,5)(2,28)(3,7)(4,30)(6,32)(8,26)(9,24)(10,14)(11,18)(12,16)(13,20)(15,22)(17,21)(19,23)(25,29)(27,31), (1,31)(2,32)(3,25)(4,26)(5,27)(6,28)(7,29)(8,30)(9,20)(10,21)(11,22)(12,23)(13,24)(14,17)(15,18)(16,19), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)>;

G:=Group( (1,29,5,25)(2,30,6,26)(3,31,7,27)(4,32,8,28)(9,22,13,18)(10,23,14,19)(11,24,15,20)(12,17,16,21), (1,17)(2,18)(3,19)(4,20)(5,21)(6,22)(7,23)(8,24)(9,26)(10,27)(11,28)(12,29)(13,30)(14,31)(15,32)(16,25), (1,5)(2,28)(3,7)(4,30)(6,32)(8,26)(9,24)(10,14)(11,18)(12,16)(13,20)(15,22)(17,21)(19,23)(25,29)(27,31), (1,31)(2,32)(3,25)(4,26)(5,27)(6,28)(7,29)(8,30)(9,20)(10,21)(11,22)(12,23)(13,24)(14,17)(15,18)(16,19), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32) );

G=PermutationGroup([[(1,29,5,25),(2,30,6,26),(3,31,7,27),(4,32,8,28),(9,22,13,18),(10,23,14,19),(11,24,15,20),(12,17,16,21)], [(1,17),(2,18),(3,19),(4,20),(5,21),(6,22),(7,23),(8,24),(9,26),(10,27),(11,28),(12,29),(13,30),(14,31),(15,32),(16,25)], [(1,5),(2,28),(3,7),(4,30),(6,32),(8,26),(9,24),(10,14),(11,18),(12,16),(13,20),(15,22),(17,21),(19,23),(25,29),(27,31)], [(1,31),(2,32),(3,25),(4,26),(5,27),(6,28),(7,29),(8,30),(9,20),(10,21),(11,22),(12,23),(13,24),(14,17),(15,18),(16,19)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32)]])

50 conjugacy classes

class 1 2A2B2C2D···2K2L2M2N4A4B4C4D4E···4L4M4N4O8A···8H8I···8T
order12222···222244444···44448···88···8
size11112···244411112···24442···24···4

50 irreducible representations

dim111111111224
type+++++++
imageC1C2C2C2C2C2C4C4C4D4C8○D4Q8○M4(2)
kernelD4○(C22⋊C8)C2×C22⋊C8C24.4C4(C22×C8)⋊C2C2×C8○D4C22×C4○D4C22×D4C22×Q8C2×C4○D4C4○D4C22C2
# reps133621628882

Matrix representation of D4○(C22⋊C8) in GL4(𝔽17) generated by

13000
0400
00160
00016
,
0400
13000
0010
0001
,
16000
01600
0010
00816
,
1000
0100
00160
00016
,
2000
0200
00131
0024
G:=sub<GL(4,GF(17))| [13,0,0,0,0,4,0,0,0,0,16,0,0,0,0,16],[0,13,0,0,4,0,0,0,0,0,1,0,0,0,0,1],[16,0,0,0,0,16,0,0,0,0,1,8,0,0,0,16],[1,0,0,0,0,1,0,0,0,0,16,0,0,0,0,16],[2,0,0,0,0,2,0,0,0,0,13,2,0,0,1,4] >;

D4○(C22⋊C8) in GAP, Magma, Sage, TeX

D_4\circ (C_2^2\rtimes C_8)
% in TeX

G:=Group("D4o(C2^2:C8)");
// GroupNames label

G:=SmallGroup(128,1612);
// by ID

G=gap.SmallGroup(128,1612);
# by ID

G:=PCGroup([7,-2,2,2,2,-2,2,-2,224,253,521,124]);
// Polycyclic

G:=Group<a,b,c,d,e|a^4=b^2=c^2=d^2=1,e^4=a^2,b*a*b=a^-1,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,b*d=d*b,b*e=e*b,e*c*e^-1=c*d=d*c,d*e=e*d>;
// generators/relations

׿
×
𝔽